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Abstract-A difficulty sometimes encountered in least-squares fit- 
ting of a one-compartment model with first-order absorption is that 
estimated values (k, and k,) of the rate constants of absorption and 
elimination are almost identical, are highly correlated and have very 
large standard deviations. This anomaly is explained by the existence 
of a class of data sets for which least-squares estimates of the rate 
constants are complex quantities. Such data sets may arise either 
from an unfortunate combination of random (e.g. assay) errors in 
the concentration values if k, and k, are sufficiently similar in 
magnitude, or from delayed absorption. 

The concentration-time profile for the one-compartment model 
with first-order absorption is given by 

where k, and k, are the rate constants for absorption and 
elimination, V is the apparent volume ofdistribution and F is the 
bioavailability. In the least-squares fitting of equation 1 to data, 
an anomalous outcome is sometimes obtained (Bialer 1980; 
Chan & Miller 1983; Wijnand 1988) with the estimates of k, and 
k, nearly equal in value. The usual recommendation in such 
cases, given without discussion of the cause, has been to use the 
special equation 

(2 ) 
k F Dose t e -k ,  

v C(t) = 

which is easily derived from equation 1 as the limiting form with 
k , + k = k .  

The characteristics ofdata-sets giving rise to the anomaly have 
not hitherto been explored; consequently the phenomenon 
cannot even be reproduced and studied at will. The purpose of 
this study was to investigate the nature and causes of the 
anomalous outcome and the range of options available in 
dealing with it. 

Nature of the anomaly 

Numerical investigations were made with the Macintosh com- 
puter program MINIM'. This least-squares program can esti- 
mate parameters by Marquardt's method, by singular value 
decomposition or by the Nelder-Mead polytope (simplex) 
method, with the fitted function defined explicitly, given as the 
right-hand side of a differential equation, or defined as a Laplace 
transform. Fitting criteria used in the present study were 
ordinary unweighted least-squares (OLS), logarithmic least- 
squares (OLS[ln]) in which the logarithm of the function is 
fitted to the logarithm of the data, weighted least-squares with 
weights inversely proportional to the data (WLS[y-']), and 
iteratively reweighted least-squares with weights inversely pro- 
portional to the square of the fitted values (IRLS[f 7). 

Anomalous estimates (for example, Table 1) are characterized 
by some or all of the following, depending on  the parameter- 
estimation algorithm, the floating-point precision, and other 
details of programming: 

s l o w  convergence with the estimated values of k, and k, in 

' Details of the Macintosh computer parameter-estimation program 
MINIM may be obtained from the author. 

@ 

Table 1. Example data-set and anomalous OLS parameter estimates. 

t 0.3 0.6 0.9 1.2 1.5 2.0 3.0 5.0 7.5 10.0 
C 0.13 0.3 0.36 0.37 0.38 0.31 0.2 0.08 0.02 0.01 

Parameter Value Standard deviation 
1.01 11 
0.7901 
0.7902 

2638.97 
2062.08 
2062.28 

dose I .OOoo (fixed) 

Singular values of Jacobian matrix: 1.082 0.432 6.38 x 
Ratio (largest/smallest): 169621 

Approximate correlation matrix: 

- 1.oOOo - 1.oOOo 1~0000 

1 .oOOo 
1.0000 1.oOOo 

equation 1 frequently interchanging their rank order; if an 
insufficiently powerful algorithm is used, there may be 
outright failure to converge (Graves et a1 1990) 

-near identity of the final estimated values for k, and k,, 
typically within lo-' 

-strong correlation between parameter estimates as determined 
from the variance-covariance matrix; typically the absolute 
values of the correlations are > 0.999 

s t r o n g  linear dependence between (i.e. collinearity o f )  the 
columns of the Jacobian matrix J of.partial derivatives; as 
shown by singular value decomposition, the ratio of largest to 
smallest singular value is typically > lo3; the matrix JTJ has 
two equal or nearly equal eigenvalues 

-very large estimated standard deviations for the fitted para- 
meters. 

The anomaly may disappear with minor changes to the data; 
for example if the first concentration value in Table 1 is changed 
from0.13 to0.18. Ifequation2 isfittedin placeofequation I ,  the 
anomaly always disappears and the estimated value of k is 
almost identical with k, and k,, but has a small standard 
deviation. 

The difficulties above might be thought to arise from loss of 
numerical significance in the computation of equation I ,  since as 
k,+k, the quantities subtracted in both numerator and denomi- 
nator become nearly identical. However, numerical considera- 
tions are easily shown not to be the prime cause of the anomaly, 
although they strongly influence the closeness of the estimates of 
k. and k,. The occurrence of the anomaly is little affected by the 
floating-point precision, as shown by trials with single- and 
double-precision arithmetic, nor can it be circumvented by use of 
different methods for evaluating the derivatives in the Jacobian 
matrix (explicit formula or numerical approximation by for- 
ward or central differences) or by use of the polytope method, 
which is derivative-free. Most tellingly, the anomaly is still 
present when the defining differential equation 

is integrated numerically to generate fitted values of C(t), with 
no reference to its analytical solution (eqn 1). 
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Cause of the anomaly 

It is well known that parameter estimation in equation 1 (with 
non-anomalous data) may, depending on the initial guesses 
provided to the estimation algorithm, produce one of two results 
(with k, > k, or k, > kA), both having the same sum of squared 
errors and both representing global minima of the fitting 
criterion. In the absence of other evidence it is conventional to 
choose the outcome with k, > k,; if necessary the two values are 
interchanged and the data refitted to ensure the desired result. A 
natural inclination then is to suppose that the outcomes of 
parameter estimation should be classified in three types: k, 7 k, 
(normal), k,=k, (anomalous) and k,< k, (flip-flop). On this 
view the anomalous case arises from a chance equality of two 
estimated parameters, but strict floating-point equality of 
parameter estimates (or even equality within is so 
improbable that the anomalous solution would virtually never 
be observed. A simple numerical experiment shows that anoma- 
lous solutions can be common. 

Data-sets were generated from equation 2 with F = V =  
Dose=k= 1 at sample times t=0.3,0.6,0.9, 1.2, 1.5,2,3, 5 ,7 .5  
and 10. Each noise-free value was modified by adding to it a 
pseudorandom normal variate of mean zero and standard 
deviation equal to 10% of the noise-free value. Twenty such 
data-sets were generated, and equation 1 fitted to each set by 
Marquardt’s method with OLS, OLS[In], WLS[Y-~]  and 
IRLS[f -,I. The outcome was regarded as anomalous if the ratio 
of largest to smallest singular value of the Jacobian matrix 
exceeded 2000. As indicated in Table 2, a substantial fraction of 
the data sets (roughly 50%) gave anomalous outcomes. 

Two further groups of 20 data-sets with the sample times were 
generated from equation 1 with F = V = Dose = k, = 1 and 
k=O.5 or 0.3. The noise-free data-sets were modified to include 
pseudorandom errors and analysed as above. The number of 
anomalous outcomes (Table 2) decreased sharply as the value of 
k departed from that of k,. It is of some interest that the four 
fitting criteria used here gave different numbers of anomalous 
outcomes; moreover many data-sets were anomalous only for 
one or two of the fitting criteria. The last row of Table 2 shows 
the number of data-sets that were anomalous for all criteria. The 
smallness of these numbers indicates that many anomalies may 
be evaded merely by use of a different fitting criterion. 

The preceding results show that a sizeable class of anomalous 
data-sets exists, and that the probability of obtaining an 
anomalous set depends on the ratio k,/k, of the parent noise-free 
data, but they do not help to identify which property of an in- 
dividual data-set is responsible for the mismatch with equation 1. 

In the course of identifying this property it proves useful to 
rewrite equation 1 in the form 

A (e-i,t - e-;.21) C(t) = - 
1 2  - 1, 

in which the rate constants I, and I, appear symmetrically. 
Equations 1 and 4 are equivalent in the sense that when 

Table 2. Number of data-sets (out of 20) giving anomalous 
Parameter estimates in equation 1. 

k,= 1 k,= 1 
k =  1 k,=0.5 k,=0.3 

OLS I I  7 1 
OLS[ln] 7 1 0 
WLS[ y - ‘1 10 3 1 
IRLS[f -21 8 1 0 
Anomalous with all fitting criteria 3 0 0 

parameters A, 1, and I 2  are estimated by fitting equation 4 to 
data, the sum of squared errors is identical with that obtained 
from fitting equation 1, and the values and standard deviations 
of I, and I, are identical with those of k, and k,. The Laplace 
transform of equation 4 is 

A 
s2 + bs + c C(S) = (5  ) 

where A, b and c are real. Three cases may be distinguished. 

Case 1. b2 > 4c. The roots of the quadratic expression in the 
denominator are real and distinct. The inverse transform is given 
by equation 4 with 

1,. I ,  = f (b Jb2 - 4 ~ )  (6 ) 

Case 2. b2 = 4c. There are two coincident roots. The inverse 
transform has a form similar to that of equation 2: 

C(t) = A t ecLt  (7 ) 
where A = bl2. 

Case 3. b2 < 4c. There is a pair of complex conjugate roots. 
Although correct (real) values may be computed from equations 
4 and 6, for example with MINIM’S complex arithmetic 
package, a more convenient form of the inverse transform is: 

(8)  
A .  C(t) = - sin[I,,,g t] e-j.rca1‘ 

L a g  

where 

(9) I,,, = b/2 and /Ilmag = f JC - bZ 

The three cases may be combined if coefficients A, b and c 
above are treated as parameters to be estimated, either directly 
by numerical inversion of the Laplace transform in equation 5, 
or by a function definition which specifies C(t) to be equation 4 
(Case I ) ,  7 (Case 2)  or 8 (Case 3) according to the current values 
of b and c. When such a function was fitted to the 3 groups of 20 
data-sets described earlier, a remarkable result was obtained: no 
outcome was anomalous. Every data-set that previously gave a 
normal outcome from fitting equation 1 belonged to Case I ,  no 
data-set belonged to Case 2, and every data-set that previously 
gave an anomalous outcome in equation 1 belonged to Case 3. 
Furthermore, the goodness-of-fit (as determined by the small- 
ness of the sum of squares) of Case 3 outcomes was in every 

0 2 4 6 8 

t & l a x  

FIG. 1. Concentration profiles predicted by equations 5,7 and 8. The 
curves are normalized to the same tmrx and C,,,. Curve A: 21 =4A2. 
Curve B: 21 =222. Curve C: 21 =12=1. Curve D: &,,dg=0.5Area~. 
Curve E: Almag=Areal. Curves A and B correspond to Case I ,  C to 
Case 2, and D and E to Case 3. 
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Table 3. Number ofdata sets out of 20 (with k,= 1, k,=0,5) giving 
anomalous WLS[y-l] parameter estimates in equation I and 
equation 10. 

T ~ a g  
0.0 
0. I 
0.2 
0.3 

Equation 1 Equation 10 
3 3 

13 3 
18 3 
20 3 

instance better than the corresponding anomalous outcomes in 
equations 1 or 4. Thus the property of an individual data-set that 
is responsible for the anomaly is that the least-squares estimates 
of the rate constants in equation 4 are complex quantities. 

The concentration profiles due to equations 5 ,7  and 8 (Fig. I )  
give guidance to the nature of data-sets that produce anomalous 
parameter estimates. Data whose profile approximates curves A 
or B in Fig. 1 are likely to be normal. Although the full time- 
course of curves D or E is not observable (since negative 
concentrations are inadmissable), data approximating the posi- 
tive portions of these curves is likely to be anomalous. Indeed 
any set of three or  more noise-free data points calculated from 
equation 8 (with Limag # 0) a t  distinct positive values o f t  is found 
to be anomalous by any fitting criterion. Thus equation 8 
provides for the first time a numerical recipe for generating 
anomalous data sets. 

A useful prediction can be based on the observation that the 
anomalous curves have a small dispersion or coefficient of 
variation of the residence times, defined by C V R T =  
VRT1/'/MRT. where VRT is the variance of the residence times 
and M R T  is the mean residence time (Yamaoka et al 1978). The 
CVRT of curve C of Fig. 1 is 1/42. This is evidently a critical 
value: data-sets with a CVRT less than this produce an 
anomalous outcome. One circumstance in which data-sets with 
small CVRT values are obtained arises when an absorption lag 
time TI,, is ignored or underestimated, since TI,, increases M RT 
without affecting VRT. If the preceding speculation is soundly 
based, it should be possible to make a previously normal data-set 
become anomalous by shifting its concentrations to later times. 
To check this prediction, the 20 data-sets above with k, = 1.  
k, = 0.5 were modified by adding to each value o f t  a lag time of 
0.1, 0.2 or 0.3. Table 3 shows &he number of anomalous 
outcomes of parameter estimation by WLS[y-']. The larger 
values of lag time cause a substantial increase in the fraction of 
anomalous outcomes, and it is readily found by experiment that 
any data-set whatsoever may be made anomalous for any fitting 

, criterion by applying a sufficiently large lag time. The prediction 
' 

is therefore confirmed. As shown in the last column of Table 3, 
the anomaly may be removed in most instances by the inclusion 
of TI,, as a parameter to be estimated: 

Discussion 

It has been shown in this study that anomalous parameter 
estimates in equation 1 result from the estimation of real rate 
constants in data-sets for which the least-squares values in 
equation 4 are complex. This circumstance may arise either from 
an  unfortunate combination of random (e.g. assay) errors in the 
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data if k, and k, are sufficiently similar in magnitude, or from 
delayed absorption. 

The appearance of complex rate constants in equation 4 (or 
equivalently the use of equation 8) does not, however, corre- 
spond to any physically interpretable pharmacokinetic model, 
as is obvious from the negative portions of the damped 
oscillatory profiles D and E in Fig. 1. In practice it will, therefore, 
be preferable to use equations 1, 2, 5 or 7 to estimate the rate 
constants even in the anomalous cases, with implicit acceptance 
of a worse fit as the price of obtaining real values. Equation 8 is 
therefore unlikely to see service for the analysis of actual 
pharmacokinetic data. Its significance lies in providing a 
numerical recipe for generating data-sets all of which are 
anomalous, and in allowing curves D and E to  be drawn in Fig. 
1. In consequence, the results of Table 2 are easily understood. 
The addition of random errors to data-sets generated from 
equations 1 or 2 evidently causes a proportion of the sets t o  fall 
on the inappropriate side of curve C. 

The above analysis leads to a further numerical recipe for 
generating anomalous data-sets, namely equation 10, and the 
surprising result that the anomaly may often be removed by 
inclusion of an  extra parameter to be estimated-the opposite of 
the usual approach in which a parameter is discarded on 
replacing equation 1 with equation 2. 

Thus the principal options available when equation 1 gives 
rise to anomalous estimates are: attempted evasion of the 
anomaly by trial of different fitting criteria; attempted removal 
of the anomaly by inclusion of an absorption lag-time para- 
meter; acceptance of the (very close) values of k, and k,; and the 
fitting of equation 2 in place of equation 1, thus obtaining a 
single rate constant k of small standard deviation. 

It does not seem possible to offer general advice as to which 
option should be pursued. Since their fitted concentration values 
are virtually identical, and k, z k, z k, the last two options are in 
most respects equivalent, but the last has the advantage of 
avoiding numerical difficulties and thereby assuring rapid 
convergence of the estimation algorithm. 

An alternative approach to the anomaly has been suggested 
(Niedzwiecki & Simonoff 1990) in which the right-hand side of 
equation 1 is reformulated as (9,  + &t - I) e -@3'. This approach 
is clearly invalid, since if dz # 0 the expression is unbounded . s 
t --t 0. Any useful model of absorption kinetics must have th: 
property C + 0 as t --t 0. 
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